Degradative inactivation of cyclic AMP-dependent protein kinase by a membranal proteinase is restricted to the free catalytic subunit in its native conformation.

نویسندگان

  • E Alhanaty
  • J Patinkin
  • M Tauber-Finkelstein
  • S Shaltiel
چکیده

A membranal proteinase from brush-border epithelial cells of the rat small intestine was shown to bring about a restricted and limited degradation of the free catalytic subunit (C) of cyclic AMP-dependent protein kinase (ATP:protein phosphotransferase, EC 2.7.1.37) with concomitant inactivation of the kinase. This membranal proteinase exhibits a remarkable specificity. (i) It degrades C in its native conformation, but not after it has been heat-denatured. (ii) The degradation of C (Mr 40,000) does not proceed further, once a distinct clipped product (Mr 34,000) is formed. (iii) The undissociated ("stored") form of the enzyme (R2C2) is not attacked by the membranal proteinase, preserving both its potential catalytic activity and its molecular integrity. Only upon addition of cyclic AMP to release free C does the proteinase attack it. (iv) The membranal proteinase does not degrade the regulatory subunit (R), released by cyclic AMP from R2C2, although R is quite susceptible to degradation by other proteolytic enzymes. None of these features of the membranal proteinase could be reproduced with trypsin, chymotrypsin, clostripain, or papain. The specific, restricted, and limited action of this membranal enzyme raises the possibility that it may have a distinct physiological assignment associated with the bioregulation of cyclic AMP-dependent protein kinase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional malleability of the carboxyl-terminal tail in protein kinase A.

The catalytic (C) subunit of protein kinase A (PKA) is regarded as a framework for the protein kinase family. Its sequence is composed of a conserved core (residues 40 300) between two segments at the amino and carboxyl termini of the protein. Since the various protein kinases differ in their specificity, it seems reasonable to assume that these nonhomologous segments may be involved in endowin...

متن کامل

THE EFFECT OF THEOPHYLLINE ON THE KINETICS OF cAMP-DEPENDENT PROTEIN KINASE CATALYTIC SUBUNIT, cAMP, PROTEIN KINASE INHIBITOR AND THEIR RELATIONSHIP IN LUNG TISSUE

We have investigated the effect of theophylline on the kinetics of the catalytic subunit of protein kinase and related factors in lung tissue. The results show that the point of highest concentration of the C subunit of protein kinase which is active in casein phosphorylation is at 3h of incubation time, but in the presence of 100 Ilg/ InL and 10µg/mL theophylline, this is shifted to I.S an...

متن کامل

(RP)-cAMPS inhibits the cAMP-dependent protein kinase by blocking the cAMP-induced conformational transition.

(RP)-cAMPS is known to inhibit competitively the cAMP-induced activation of cAMP-dependent protein kinase (PKA). The molecular nature of this inhibition, however, is unknown. By monitoring the intrinsic tryptophan fluorescence of recombinant type I regulatory subunit of PKA under unfolding conditions, a free energy value (delta GDH2O) of 8.23 +/- 0.22 kcal/mol was calculated. The cAMP-free form...

متن کامل

Dissecting the cooperative reassociation of the regulatory and catalytic subunits of cAMP-dependent protein kinase. Role of Trp-196 in the catalytic subunit.

The catalytic (C) subunit of cAMP-dependent protein kinase requires two distinct surfaces to form a stable complex with its physiological inhibitors, the regulatory (R) subunits and the heat-stable protein kinase inhibitors. In addition to a substrate-like segment that is common to both inhibitors, R requires a peripheral recognition site, PRS2. This surface is comprised of the essential phosph...

متن کامل

Regulation of Shaker K+ channel inactivation gating by the cAMP-dependent protein kinase.

In response to depolarization of the membrane potential, Shaker K+ channels undergo a series of voltage-dependent conformational changes, from resting to open conformations followed by a rapid transition into a long-lived closed conformation, the N-type inactivated state. Application of phosphatases to the cytoplasmic side of Shaker channels in excised inside-out patches slows N-type inactivati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 78 6  شماره 

صفحات  -

تاریخ انتشار 1981